آموزش آنالیز SPSS

تعیین نرمال بودن داده ها در spss

تعیین نرمال بودن داده های در spss

در مباحث گذشته، به بررسی انواع داده‌ها در نرم افزار spss پرداختیم. گفتیم که انواع داده‌ها در آنالیز‌های آماری چگونه هستند (بررسی انواع داده ها در آنالیز آماری spss) و چگونه باید  نوع آزمون آماری را در spss  انتخاب کنیم. حال پس از اینکه نوع داده‌ها تعیین شد. باید نوع آزمون مشخص شود.

بنابراین آموزش‌های جلسات گذشته گذشته مشتمل بر خلاصه‌ی زیر است:

۱٫ انواع داده‌ها در آنالیز آماری:

مقیاس اسمی (Nominal Scale)

مقیاس ترتیبی (Ordinal scale)

مقیاس فاصله ای (Interval scale) (پیوسته یا برش دار)

برای دیدن این مقاله و آشنایی بیشتر با نوع داده‌ها بر روی لینک زیر کلیک کنید:

بررسی انواع داده ها در آنالیز آماری spss

۲٫ نوع آزمون که مشتمل بر پارامتریک و ناپارامتریک بودن است.

برای مشاهده مبحث دوم هم به لینک زیر مراجعه کنید:

آموزش انتخاب نوع آزمون آماری در spss

برای انجام آنالیز آماری خود می‌توانید با مشاوران ما تماس حاصل کنید.

خوب در این مبحث هم به بررسی نرمال بودن داده‌ها خواهیم پرداخت:

تعیین نرمال بودن داده ها در spss

روش‌های مختلفی برای تعیین نرمال بودن داده‌ ها در spss وجود دارد.

۱٫ بررسی چولگی و کشیدگی نمودارها و تعیین نرمالیتی

ابتدا چولگی و کشیدگی داده ها را مورد آزمون قرار خواهیم داد. این کار را می توان از مسیر زیر در SPSS انجام داد:

Analyze> Descriptive Statistics> Descriptives

در کادر محاوره ای که باز می شود متغیر هایی که چولگی و کشیدگی آن‌ها مد نظر است را به کادر سفید انتقال می‌دهیم و سپس روی کلید options  کلیک می‌کنیم و در کادر محاوره ی آن گزینه های Skewness و kurtosis را فعال می‌کنیم. (شکل ۱)

تعیین نرمال بودن داده ها در spss
تعیین نرمال بودن داده ها در spss

شکل ۱ تعیین نرمال بودن داده ها در spss

چولگی (شکل۲) (Skewness) برابر با گشتاور سوم نرمال شده است. چولگی در حقیقت معیاری از وجود یا عدم تقارن تابع توزیع می باشد. برای یک توزیع کاملاً متقارن چولگی صفر و برای یک توزیع نامتقارن با کشیدگی به سمت مقادیر بالاتر چولگی مثبت و برای توزیع نامتقارن با کشیدگی به سمت مقادیر کوچکتر مقدار چولگی منفی است. در شکل زیر چولگی مثبت و منفی را می بینید.

چولگی در spss
چولگی

چولگی (شکل۲)

کشیدگی (Kurtosis) (شکل ۳) یا کورتزیس نشان دهنده قله‌مندی یک توزیع است.  مقدار کشیدگی را با گشتاور چهارم نرمال بر آورد کرده اند، به عبارت دیگر کشیدگی معیاری از تیزی منحنی در نقطه ماکزیمم است و مقدار کشیدگی برای توزیع نرمال برابر ۳ می باشد. کشیدگی مثبت یعنی قله ی توزیع مورد نظر از توزیع نرمال بالاتر و کشیدگی منفی نشانه ی پایین تر بودن قله از توزیع نرمال است.
در حالت کلی  معمولا چنان چه چولگی و کشیدگی در بازه ی (۲ ، ۲-) نباشند داده ها از توزیع نرمال بسیار دور بوده و می بایست قبل از هر گونه آزمونی که برای انجامشان باید فرض نرمال بودن داده ها برقرار باشند؛ اصلاح گردند.( البته ممکن است بعضی از آمار دادنان این بازه را کوچکتر یا بزرگتر در نظر بگیرند. )

کشیدگی در spss
کشیدگی در spss

بررسی کشیدیگی در spss  (شکل ۳)

همانطور که در شکل فوق مشاهده می‌شود تنها خط قرمز دارای کشیدیگی نرمال می‌باشد.

خوب تا اینجا چولگی و کشیدگی را به صورت منحنی مشاهده نمودیم. اما چولگی و کشیدگی را در spss به روش‌های دیگر نیز می‌توان مورد تجزیه و تحلیل قرار داد. در مثال زیر هم چولگی و کشیدیگی را با هم مورد بررسی قرار می‌دهیم:

Skewness Kurtosis
Statistic Std. Error Statistic Std. Error
D1 ۰٫۱۴۶ ۰٫۲۸۷ ۰٫۷۸۴ ۰٫۵۶۶
D2 ۰٫۱۰۹- ۰٫۲۸۷ ۰٫۹۹۴- ۰٫۵۶۶

مقدار چولگی مشاهده شده برای متغیر D1 برابر ۰٫۱۴۶ است و در بازه (۲ ، ۲-) قرار دارد. یعنی از لحاظ کجی متغیر D1 نرمال بوده و توزیع آن متقارن است. مقدار کشیدگی آن ۰٫۷۸۴ است و در بازه (۲ ، ۲-) قرار دارد. این نشان می‌دهد توزیع متغیر از کشیدگی نرمال برخوردار است.

خوب برای دیدن تصاویر و نمودارهایی از چولگی و کشیدیگی نیز در spss می‌توانیم از مسیر زیر اقدام کنیم

Analyze/ Descriptive Statistics/ Frequencies

در کادر باز شده متغیرهایی که می‌خواهید منحنی نرمال را برای آن ترسیم کنید به کادر سفید انتقال  داده و روی کلید Charts کلیک  کرده و در کادر جدید گزینه‌های Histograms و with normal curve را فعال می‌کنیم تا منحنی نرمال و نمودار هسیتوگرام به نمایش در بیاید.

۲٫ آزمون شاپیرو ویلک

گرچه آزمون چولگی و کشیدگی اطلاعاتی در مورد نرمال بودن داده ها در spss به ما ارائه می‌کند. اما برای اطمینان بهتر است که از آزمون‌های دیگری همچون شاپیرو ویلک نیز استفاده کنیم. برای این کار از مسیر زیر وارد خواهیم شد:

Analyze > Descriptive Statistics> Explore

پس از اینکه مسیر بالا را طی کردیم به مرحله انتخاب متغیرها خواهیم رسید. برای انتخاب متغیرها مطابق شکل ۳، متغیر یا متغیرهایی که برای آزمون نرمال بودن، در نظر گرفته‌ایم را  وارد لیست متغیر های وابسته می‌کنیم و سایر جاها را خالی خواهیم گذاشت. سپس  به منوی plots رفته و گزینه ی  Normality plots with tests را تیک دار می‌کنیم (شکل ۴) .

آزمون شاپیرو ویلک
شاپیرو ویلک

شکل ۳ – آزمون شاپیرو ویلک

آزمون شاپیرو ویلک - نرمال بودن داده ها در تحلیل آماری
آزمون شاپیرو ویلک – نرمال بودن داده ها در تحلیل آماری

شکل ۴- آزمون شاپیرو ویلک

در این مرحله یک خروجی شامل جدولی تحت عنوان  Tests of Normality خواهد بود که دو مقدار سطح معناداری را برای هر کدام از متغیر ها به طور مجزا ارائه خواهد داد. به جدول زیر که از تحلیل به شاپیرو ویلک دقت کنید.

Tests of Normality Shapiro-Wilk
Tests of Normality Shapiro-Wilk

تحلیل جدول: به قسمت Shapiro-Wilk در جدول فوق توجه کنید، اگر سطح معناداری در آزمون Shapiro-Wilk که  با sig. نشان داده می شود بیشتر از ۰٫۰۵  باشد می توان داده ها را با اطمینان بالایی نرمال فرض کرد.در جدول فوق برای متغیر Hospital Los بالای ۰٫۰۵ می‌باشد بنابراین با تقریب بسیار بالایی نرمال می‌باشد و sig متغیر age که ۰٫۰۰۰ می‌باشد، غیر نرمال خواهد بود.

خوب کار بررسی نرمال بودن، تمام شده است؟

خوب اگر پس از بررسی چولگی و کشیدگی، نتیجه گرفتیم که چولگی و کشیدگی معمولی می‌باشد، نباید همانجا کار را رها کنیم. در اینجا یا باید آزمون شاپیرویلک بگیریم و یا از نمودارهای شاخ و برگ استفاده کنیم. اگر آزمون شاپیرو تایید کرد که داده‌ها نرمال هستند می‌توان گفت که کار تمام است. اما اگر کسی از آین آزمون استفاده نکرد، آیا راه دیگری برای اطمینان از نرمالیتی دارد؟ برای پاسخ به این سوال باید گفت که بله. آزمون شاخ و برگ و جعبه‌های آماری دومین راه اطمینان از صحت اطلاعات به دست آمده از آزمون کشیدگی است.

۳٫ آزمون شاخ و برگ و جعبه‌های آماری برای بررسی نرمالیتی

در نمودار Q-Q (شاخ و برگ) داده های یک توزیع نرمال معمولا روی خط قرار می گیرد و داده ها در روی خط مارپیچ یا  S-وار نخواهند بود. در آزمون جعبه‌های آماری نیز، جعبه ی یک نمودار معمولا برای توزیع نرمال در مرکز نمودار قرار می گیرد. دیدن داده های پرت ( که آنها را با ستاره یا نقطه نشان می دهند) می تواند انحراف یک توزیع را از توزیع نرمال به خوبی تشریح کند. این دو نمودار در زیر آمده‌اند.

تحلیل Q-q

تحلیل block در spss

مشاهده می‌شود که توزیع شاخ و برگ ه صورت، S وار بوده و توزیع جعبه‌ای نیز در مرکز قرار نگرفته است بنابراین این متغیر نرمال نیست.

خوب در صورتی که داده‌ها نرمال باشند از روش‌های پارامتریک استفاده خواهیم نمود و در صورتی که داده‌ها غیر نرمال باشند از روش‌های ناپارامتریک.

[taq_review]

برچسب

Related Articles

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

Close